
Hoverball Manual
Version 1.4 (2021.01.28)

��CC��
CC

����
�
�

Stefan Bornhofen
Matthias Bornhofen

www.hoverball.org

Contents

What is Hoverball? . 5

1 The Program 6
1.1 Installation . 6
1.2 Executable classes . 6

1.2.1 Simulator . 7
1.2.2 Server . 7
1.2.3 Controller . 7
1.2.4 Session . 8
1.2.5 Human player . 8

2 The Game 9
2.1 Hoverball’s world . 9
2.2 Pucks . 10
2.3 Vision and action . 10
2.4 Energy . 10
2.5 Communication . 11
2.6 Rules of the game . 11

3 The Simulator 12
3.1 The Simulator’s three states . 12
3.2 Qualities of the simulation . 12
3.3 Simulator variables . 13
3.4 Options . 13
3.5 Orthonormal bases and Euler vectors . 15
3.6 Network communication . 15
3.7 Unit clients . 16
3.8 Control clients . 18

4 The Controller 20
4.1 Channels . 20
4.2 Options . 20
4.3 Control buttons . 20

3

4 CONTENTS

4.4 Screen . 21
4.5 Zoom . 21
4.6 Follow mode . 21
4.7 Views . 21
4.8 Debug . 22

5 Programming 23
5.1 Session . 23
5.2 Hovlets . 24
5.3 Units . 25
5.4 Teams . 25
5.5 Graphical Debugging . 26
5.6 Operator Overloading . 27

A Mathematical Specification 28
A.1 A puck’s attributes . 28
A.2 Propulsion . 29
A.3 Friction . 29
A.4 Universal equation of motion . 30
A.5 Polarization . 30
A.6 Collision and reflection . 31
A.7 The sphere . 33
A.8 Euler angle . 34
A.9 Visual angle . 35
A.10 Energy . 35

B Tables 37
B.1 Network protocols . 37
B.2 Hoverball options . 38

C Example „Clumsy“ 39

Introduction

What is Hoverball?

The Hoverball project pursues the approach of creating a playful real-time simulation for Multi
Agent Systems. At the same time it was paid heed to designing the underlying simulation laws as
well as the actual game rules as simple as possible for the purpose of axiomatic mathematics and
aesthetics. In doing so, we expect that the development of efficient agents keeps plain in order to
contribute to new fundamental insights in Artificial Intelligence.

The available abstract game concept lives up to these postulations. It would be difficult to find
another simulation platform who offers such a clear, delightful and quick access to the world of
Multi Agent Systems. In addition, real time allows human participation in the simulation. Though
Hoverball represents basically a challenge for programmers creating efficient teams that compete
against each other, it is also an easily accessible computer game for humans.

Hoverball was inspired by the existence of the RoboCup Soccer Simulator aiming at the
research of Artificial Intelligence based on a soccer game. As a result, RoboCup has rather complex
rules conforming to soccer and to the real world. However, Hoverball doesn’t claim a suchlike
reference to reality and offers a simpler concept: Two dimensional pucks forming two or more
teams are placed on a spherical surface, bumping other little pucks in a playful sports contest in
order to score by following simple rules.

As for the laws of the simulated world, the objective during the development of the game was
to ground the simulator on a sound physical basis: motions, friction, the pucks’ collisions — all
computations are based on existing physical laws. Thanks to physicist Horst Wilhelm (Papenburg,
Germany) we managed to meet this challenge, even though some game parameters differ from the
values of respective physical constants.

The simulator is written in Java and consequently operating system independent as well as
network-compatible. In the spirit of free software distribution Hoverball is an Open Source Project
under the terms of the GNU General Public Licence.

5

Part 1

The Program

Hoverball is completely written in Java and runs on any operating system.

1.1 Installation

Visit Hoverball on the internet at

www.hoverhall.org

and download the archive hoverball.1.4(2021.01.28).en.zip. It contains:

demo [.*] / ... some examples of the usage of Hoverball.

docs/ ... the Hoverball Interface Specification.

src/ ... the source code.

contact@... ... for some feedback.

COPYING ... the license agreements.

hoverball.jar ... the program components of Hoverball.

manual.pdf ... this documentation.

To start Hoverball you only have to add the archive hoverball.jar to the classpath of your Java
Platform. You can install hoverball.jar as Java Extension as well. You’ll find out more about
this subject in the documentation of your Java Platform.

1.2 Executable classes

The classes of the file hoverball.jar are condensed in a package called hoverball and in some
sub packages. The following classes of this package can be executed as an external application:

class hoverball.Simulator ... Hoverball’s Simulator.

class hoverball.Server ... an independent Hoverball Server.

class hoverball.Controller ... a universal tool controlling the Simulator.

6

1.2. EXECUTABLE CLASSES 7

class hoverball.Session ... a standard session.

class hoverball.Human ... an interface for human players.

1.2.1 Simulator

Class: hoverball.Simulator
Usage: java hoverball.Simulator [:port]

The Simulator is responsible for every aspect relating to the management of Hoverball’s world
and represents the core piece of the program.

If the :port is indicated, the Simulator is opened at this port, otherwise it registers at the
standard port 1234. (The Simulator’s complete network address is composed of host:port. So if
your computer is called galileo and if the Simulator is running at the standard port, his network
address is galileo:1234.)

All details concerning the Hoverball Simulator are described in part 3 of this documentation.

1.2.2 Server

Klasse: hoverball.Server
Aufruf: java hoverball.Server [:port]

The server is able to host multiple games (i.e. multiple simulator instances).
In order to be able to assign clients who are registering to the correct game, a „hashtag“ is

transferred when registering, which identifies the game on the server. If the client does not send a
hashtag when registering, the server creates a new game with a new hashtag and sends it back to
the client.

Currently there is a server running under the network address hoverball.net on which Hoverball
can be played over the Internet!

1.2.3 Controller

Class: hoverball.Controller
Usage: java hoverball.Controller [host][:port][#hash]

The Controller is a multi-functional tool for the piloting of the Hoverball Simulator. When it is
connected to the Simulator, it can

• manage the list of players that have connected to the Simulator,

• change game parameters,

• start and stop the simulation,

• display Hoverball’s world on screen.

If host:port#hash is specified, the Controller automatically connects to the Simulator at this
address. The Controller’s functions are described in part 4 of this documentation.

8 PART 1. THE PROGRAM

1.2.4 Session

Class: hoverball.Session
Usage: java hoverball.Session [host][:port][#hash]

The Session forms the base class for a fast and flexible execution of Hoverball. It is designed to be
able to program with a constant Hoverball configuration during the development of a new team.

If this class is executed, it opens a Simulator �– at the standard port 1234 or at another port if
:port is specified — and a Controller connected to it, or on specification of host:port#hash it only
opens a Controller which automatically connects to the Simulator at this address.

There is a brief introduction to team programming in Java in part 5 of this documentation.

1.2.5 Human player

Class: hoverball.Human
Usage: java hoverball.Human [team [name [color] [host][:port][#hash]]]

As the simulation runs in real time, you can easily get in the game by way of a human player. There
is a simple method for that using Hoverball’s human player: Define your team and player name
in the command line and pilot your puck across the sphere by using the CRSR keys (move forward
and backward, turn to the left and to the right) and the keys CTRL and SHIFT (attract and shoot
the ball)!

The color color is given as a hexadecimal six-digit number (e.g. FFC800 for orange). If team is
a color word (e.g. orange), this color is used for the player.

The following command gives a first insight into Hoverball’s world:

java -cp hoverball.jar hoverball.Human orange name

Click on [>] — and here we go!

Part 2

The Game

Hoverball is the simulation of an abstract soccer game: Two teams compete for a ball and
try to score by means of well directed shots. We call Hoverball „abstract“ because the virtual
environment is reduced to simple geometric shapes, and the motions of the objects obey basic laws
of nature.

For this purpose, mathematics gives us an important basis by providing for Hoverball’s world
and its properties. Any curious reader can find the mathematical specifications that underlie the
game and its dynamics in appendix A. For now, let’s be satisfied with a more simplified presentation.

Hoverball players can be piloted by agents, that means autonomous computer programs, which
process sensory information (e.g. their current vision) into actions (e.g. a certain movement). Now
it’s up to you to program computer agents for your own team in order to compete with other teams
in the Hoverball Game.

2.1 Hoverball’s world

The game Hoverball takes place on a two dimensional plane, except that it is not the Euclid plane
but the surface of a three dimensional sphere. Circular pucks are put on it that are able to „hover“
across this bent plane in linear time. These pucks have a defined radius and mass distributed
uniformly over their surface area.

The following four physical laws obtain:

1. Accelerated Motion — Basic Law of Mechanics
Pucks can be turned and accelerated by forces.

2. Friction — Law of Viscous Friction
Moving pucks slow down without being impacted by external forces. For this, imagine the
pucks shifting some „ether“ that mantles the whole sphere homogenously.

3. Collision — Law of Elastic Collision
When two pucks crash they rebound without loss of energy. Reflection also affects the pucks’
rotation as we premise a 100% stiction at their border.

9

10 PART 2. THE GAME

4. Polarization — Coulomb’s Law
Every puck holds a charging point that can polarize positively. Like electro magnetism,
identically signed charges repel each other whereas differently signed charges attract. The
interaction of two charges fades with increasing distance.

2.2 Pucks
There are two types of pucks. The ball is a puck with a very simple structure.
Its charging point, called Q in the figure, is right in its center. All balls have
the same radius and mass, but they may be differently polarized.

��CC��
CC

s
Q

����
�
� s
s

�
�
�

�
�
�
��s

�
�
�
�
�
�

��

�
�
����

�
���

Q

FL

FR

The player, called unit, is a more complex and slightly bigger puck:

• Its charging point Q doesn’t reside in its center but at the
midway to the front. The unit is able to polarize freely within
default limits, and so it can attract or repel a charged ball with
different forces.

• What is more, a unit holds two propulsion points situated left and right at the midway
between its center and its border. At these points it may apply forces FL and FR along the
parallel action lines indicated in the figure, these forces being subject to default parameters.

Equipped in such a manner, all essential movements are possible: For instance, rectified forces
cause a mere forward or backward push, antipodal forces induce rotation.

General attributes like radius, mass or the limits of charge and propulsion are identical to all units.

2.3 Vision and action

The player’s algorithmic process is quite simple: It receives information about its current vision in
short intervals, and thereupon it may send its actions concerning charge and propulsion. However
its field of vision is restricted: A player only sees what is „in front of it“. We define this term as
the spherical pie of a certain angle starting straight ahead — per default the frontal hemisphere
(180 ◦).

To navigate more precisely, there are marked six spots, so-called nodes, on the sphere. They
don’t move and they aren’t an obstacle, but they offer a reliable orientation to the players. The six
nodes are situated exactly at the piercing points of the three Cartesian axes through the sphere.

2.4 Energy

Engine force and polarisation cost energy. Therefore, the players are equipped with a storage of
energy to pay their action costs. Additionally, the lower and upper limits of actions (force and
charge) proportionally depend on their remaining energy.

To gain back energy, the players are continuously recharged by the system with a constant
energy recharge rate.

2.5. COMMUNICATION 11

2.5 Communication

In addition, the players are able to communicate. There is a communication channel which each
player can leave his messages on.

A message consists of a finite string of characters and remains „hearable“ until the sending
player overwrites it.

2.6 Rules of the game

In Hoverball two competing teams of three players each are put on the sphere. Moreover, there is
one unique polarized shot ball and one uncharged team ball per team. A team scores when the shot
ball hits the own team ball. But it is prohibited to the players to touch any team balls themselves.
Otherwise the player suffers from complete loss of energy for a certain penalty time period. Now
the objective consists in scoring as much as possible within a limited game duration.

Since only the shot ball is charged and thus manageable by polarization, Hoverball gains its
soccer-like character: Players will wage a fight for the shot ball in order to shoot at the mobile
goals.

It may seem weird that, unlike in a soccer game, players score by shooting at their own goal.
However, this allows an extension to more than two competing teams where every player is anxious
to score by targetting at its own team ball. Again, there can be matches with multiple shot balls,
more than three players per team and many other options.

Part 3

The Simulator

To handle the Simulator, you have to know how it is designed. In this chapter we’ll see how the
Simulator operates as automaton, how it executes the simulation and how it administrates the
parameters of Hoverball’s world. Lastly, a detailed presentation of its network communication
will be given.

3.1 The Simulator’s three states

The structure of the Hoverball Simulator is equivalent to a three-state automaton:

��
��

0

Initialized
��
��

1
Paused

��
��

2
Running

-
�

-
�

Checkin

Initialized This is the default state. The Simulator is reset and accepts player registrations.

Paused A game has been created but is (still) paused.

Running The simulation is running.

In principle, players can register at the Simulator at any time, but newly-registered players are only
accepted into the game after the next check in.

3.2 Qualities of the simulation

Like every simulation program, the Hoverball Simulator cannot operate continuously but only in
discrete steps. Therefore, you can specify the simulation frequency the Simulator will try to keep
— depending on the resources.

The decisiv parameter for the precision of simulation is a precision factor. Precision is thus
independent of frequency!

Finally, note that the Hoverball time is proportional to real time (and not to frequency!). Let’s
call Λ („Lambda“) the ratio between Hoverball time and real time.

12

3.3. SIMULATOR VARIABLES 13

3.3 Simulator variables

The Simulator administrates a table of variables you can picture yourself as a normal, initially void
hashtable allocating any value to a key string. Some strings are designated as Hoverball options
in order to determine the Simulator’s parameters. As long as an option isn’t defined explicitly in
the table, the Simulator uses its default value. It will react in the same way if the value exceeds its
limits or cannot be converted into a decimal number (all parameters are numeric).

3.4 Options

The Hoverball options are divided into five parameter classes:

simulator ... parameters that determine the Simulator’s behavior.

game ... parameters that define game conditions.

world ... parameters of Hoverball’s world.

unit ... unit properties.

ball ... ball properties.

The key strings of the Hoverball options have the consistent designation "class.parameter".

Parameters of the class simulator

Option Limits Default Description
simulator.frequency 0 < · 50 Simulation frequency (in Hertz).

The Simulation frequency does not affect the
calculating precision.

simulator.time Λ 0 ≤ · 1 Real time coefficient (in Hertz).
Ratio Hoverball time/real time.

simulator.precision 0 < · 1 Precision coefficient.
This changes the precision and thus the
simulation behavior. Attention!

Parameters of the class game

Option Limits Default Description
game.duration T 0 ≤ · 300 Game duration.

Specification in Hoverball time units.
game.balls.shot 0 ≤ · ≤ 99 1 Number of shot balls.
game.balls.team 0 ≤ · ≤ 99 1 Number of team balls per team.
game.timeout 0 < · 1 Score timeout.
game.penalty Θ 0 ≤ · 10 Penalty duration.
game.recharge κ 0 ≤ · 0.2 Energy recharge rate for units.

14 PART 3. THE SIMULATOR

Note: game.balls.shot and game.balls.team will be rounded to the next integer value. All time
specifications are given in Hoverball seconds.

Parameters of the class world

Option Limits Default Description
world.radius R 0 < · 50 Sphere radius. (cf. A.7)
world.viscosity V 0 ≤ · ≤ 1 0.1 Friction viscosity. (cf. A.3)
world.boundary b 0 < · 0.1 Friction boundary layer. (cf. A.3)
world.permittivity ε0 0 < · 0.000001 Electric field permittivity. (cf. A.5)

Parameters of the class unit

Option Limits Default Description
unit.radius r 0 < · 2 Unit radius.
unit.mass m 0 < · 4 Unit mass.
unit.charge.min Q− · ≤ 0 -1 Unit’s highest negative charge.
unit.charge.max Q+ 0 ≤ · 1 Unit’s highest positive charge.
unit.charge.pos λQ 0 ≤ · ≤ 1 0.5 Position coefficient of the charge point. (cf.

A.5)
unit.charge.cost cQ 0 ≤ · 10 Energy cost for charge. (cf. A.10)
unit.engine.min F− · ≤ 0 -50 Unit’s highest negative engine force.
unit.engine.max F+ 0 ≤ · 50 Unit’s highest positive engine force.
unit.engine.pos λF 0 ≤ · ≤ 1 0.5 Position coefficient of the propulsion points.

(cf. A.2)
unit.engine.cost cF 0 ≤ · 0.001 Energy cost for engine force. (cf. A.10)
unit.energy.max E+ 0 ≤ · 1 Unit’s highest energy level. (cf. A.10)
unit.vision ϕ 0 ≤ · ≤ 2 1.0 Unit’s vision angle. (cf. A.9)

This value is multiplied by π again.
unit.message ` 0 ≤ · 100 Length of unit messages.

Note: unit.message will be rounded to the next integer value.

Parameters of the class ball

Option Limits Default Description
ball.radius r 0 < · 1 Ball radius.
ball.mass m 0 < · 1 Ball mass.
ball.charge Q 0 ≤ · 1 A shot ball’s permanent charge.
ball.halflife 0 < · 0.005 A team ball’s charge halflife

Note: The Hoverball default values are adjusted to the ball’s dimensions!

3.5. ORTHONORMAL BASES AND EULER VECTORS 15

3.5 Orthonormal bases and Euler vectors

To construe the Simulator’s vision information you have to know how it governs the pucks’ positions
on the sphere. For this purpose, we need a bit of math but nothing that exceeds elementary linear
algebra.

The Simulator bases its parametrization upon the following observation: We can identify a
puck’s spherical position together with its direction of vision uniquely with a positively oriented
three dimensional orthonormal base (x1, x2, x3). In doing this, we choose the correlation in such a
way that the extension of the vector x3 pierces the sphere exactly in the puck’s center, and that the
vector x1 points to its direction of vision. The vector x2 seems dispensable as it can be derived from
x1 and x3, but due to this identification of positions and orthonormal bases we make use of matrix
calculus: If we translate the orthonormal bases into their corresponding 3×3 matrices (using the
base vectors as column vectors), a puck’s movement corresponds to a multiplication of its position
matrix by a turn matrix described again by a positively oriented orthonormal base.

For the transmission of a position matrix we’d like not to specify all of its nine coordinates,
but to make with a number as small as possible — three of them will do. Euler invented a way
to decompose a positively oriented orthonormal base into three elementary turns. The Hoverball
Simulator applies a similar method, but it uses other elementary turns than Euler. Anyway, we
want to keep the terms Euler angle and Euler vector (Euler angles as three dimensional vectors)
for Hoverball’s kind of decomposition.

The meaning of the Euler angles can be illustrated by a little thought game: Imagine yourself
standing on the sphere and let (ϕ1, ϕ2, ϕ3) be an Euler vector you receive, representing the position
of a perceived puck. Now you will be able to locate the puck by doing the following:

1. Turn around ϕ1.

2. Walk down the spherical angle ϕ2 (i.e. the distance ϕ2 multiplied by the sphere radius).
Now you are standing in the puck’s center.

3. Turn around ϕ3.
Now both of you are looking in the same direction.

You can find a detailed definition of the Euler angles in appendix A of our documentation.

3.6 Network communication

The Hoverball network communication operates in server-client style: The Simulator (server)
serves the players (clients) on request with vision information and receives their actions. This is
done via TCP.

16 PART 3. THE SIMULATOR

The concrete approach is standard: The
client addresses its first message to a special
registration socket of the Simulator which is the
default port 1234 (or likewise). The Simulator
observes the registration, opens a socket and
answers to the client by use of this new socket.
As datagrams always imply their „sender“ (each
datagram contains the socket address where it
is sent from), the client is able to identify the
new server socket and henceforth to address all
following messages to it, until client and server
get disconnected.

e
6

?

e
6

?

e
6

?

e1234

� �
� �

· · ·

· · ·

Server

��
��
C3

u
��
��
C2

u
��
��
C1

u��
��
Cn

u��
���

�

6

e = Server Socketsu = Client Sockets

Clients

The network language consists of simple strings in the form

(command argument argument ...)

where the arguments can be terminal strings or other non-terminal parenthesized expressions —
whatever is required. Terminal expressions are separated by space characters. If a space character
is to be included in an expression, e.g. on declaring a team name or a player name, the expression
has to be put into quotation marks "...". (If you want to produce quotation marks or backslashes
you have to use \" and \\.)

A particular client’s expression is the argument *. This wildcard signifies that the old value
should be retained if this is useful. The Simulator doesn’t employ the wildcard in its expressions.

3.7 Unit clients

When a player connects to the Simulator, we call it a unit client. The Simulator now attributes
a so-called channel to each unit client for a non-ambiguous identification, denoted as the pair
(t, n ∈ {1 . . . 99}) of natural numbers . The number t corresponds to the team number and n to
the unit’s player number within its team. This channel assignment happens once on the unit’s
registration and remains until disconnection. The player’s integration into their team takes place
only by means of the team name: Players registering with the same team name to the Simulator
are assigned to the same team. The channel recognition is used by a unit to identify the Hoverball
objects on the sphere. A player „sees“ another player as (unit t n). Thus it can find out its team
membership just by comparing the t-variables. This system is transferred to balls and nodes: A
team ball is perceived as (ball t n) where t corresponds to the players’ team number, but their
n is counted again starting with 1. The t of a shot ball is 0. The nodes are enumerated as (node 0
n), according to their position like the eyes on a die from n = 1 . . . 6.

As the units don’t know the current time, it is only important for them to realize when a game
period begins (running) and when it ends (paused). For this, we define that a game is started resp.
resumed by reception of the first vision, and that it keeps running until a break message is received.

The communication protocol between unit client and Simulator is described below:

3.7. UNIT CLIENTS 17

Unit Client to Server Server to Unit Client

(connect #[hash] team unit color) (connect #[hash] t n team unit color)
Connects to the Simulator.
• hash = hashtag of the game
• team = team name
• unit = player name
• color = color code in the form 0xRRGGBB
(or as decimal number)

Accepts the connection. Delivers the
channel identification and confirms the
registration and the hashtag.

(checkin X∗)

The player has been checked in a game
with the indicated parameters.

The player doesn’t get all parameters, but
only (in this order):
• Λ (simulator)
• R V b ε0 (world)
• r m Q− . . . E+ ϕ ` (all of unit)
• r m Q (ball)

(look) (look E ϑ Puck∗)
Requests the current vision. Sends the current vision.

Nodes are perceived as pucks, too. The
player sees itself.
• E = own energy level
• ϑ = own penalty time
◦ Puck ::= (what t n x1 x2 x3 [mess.])
◦ what ::= unit | ball | node
• what t n = puck identification
• (x1, x2, x3) = the puck’s relative position
(Euler vector)
• message = puck’s message (units only)

(action Q FL FR [message])
Sends an action.
The parameters Q, FL, FR can be
replaced by *.
• Q = new charge value
• FL, FR = new engine values
• message = new message

(break)

The game has been suspended.

(ping) (ping)

Holds the connection. Holds the connection.

18 PART 3. THE SIMULATOR

Unit Client to Server Server to Unit Client

(bye) (bye)

Disconnects from the Simulator. Disconnects from the unit client.

3.8 Control clients

Beside unit clients there are control clients that control the Simulator and receive its complete
information. The Hoverball Controller is such a control client.

The control clients use an extended network syntax: Beside the above simple messages they
accept and send messages as well in the form

(command argument argument ...)(command argument argument ...)...

which can be packaged in one string.

The communication protocol between control client and Simulator works as follows:

Control Client to Server Server to Control Client

(connect #[hash] name) (connect #[hash] name)
Connects to the Simulator.
• hash = hashtag of the game
• name = control client’s name

Accepts the connection and confirms the
registered name and the hashtag.
Subsequently the control client is informed
about the current Simulator’s
configuration.

(set key [value]) (set key [value])
Creates or deletes a Simulator’s variable.
• key = key string
• value = variable value

A Simulator’s variable has been created or
deleted.
• key = key string
• value = variable value

(channel t n team unit color host)
A channel has been opened.
• t n = channel identification
• team = team name
• unit = player name

• color = color code in the form 0xRRGGBB
• host = unit client’s host name

3.8. CONTROL CLIENTS 19

Control Client to Server Server to Control Client

(channel t n) (channel t n)

Closes a Channel.
• t n = channel identification

A channel has been closed.
• t n = channel identification

(state q) (state q)

Changes the Simulator’s state.
• q = new state

The Simulator’s state has been changed.
• q = new state

(view [time] Puck∗ Score∗) (view time Puck∗ Score∗)
Changes the game situation.
All arguments (except identifications) can
be replaced by *.

Delivers the current game situation.
(cf. on the left for description)

• time = current time
◦ Puck ::= (what t n x1 x2 x3 v1 v2 v3 r m Q [FL FR E ϑ message])
◦ what ::= unit | ball
• what t n = puck identification
• (x1, x2, x3) = puck’s absolute position (Euler vector)
• (v1, v2, v3) = puck speed (Euler vector)
• r = puck radius
• m = puck mass
• Q = puck charge
• FL, FR = propulsion (for units only)
• E = energy level (for units only)
• ϑ = penalty time (for units only)
• message = message (for units only)
◦ Score ::= (score t score)
• t = team identification
• score = score

(ping) (ping)

Holds the connection. Holds the connection.

(bye) (bye)

Disconnects from the Simulator. Disconnects from the control client.

Part 4

The Controller

This chapter intends to give an overview of the Controller’s different functions. Let’s suppose a
connection to the Hoverball Simulator that we can establish via the menu Hovlet .Connect as
well as via the input field „Server:“ and the button [-> <-].

4.1 Channels

The channel list indicates all unit clients connected to the Simulator. The list can be shown using
the menu View .Channels.

A double click on a channel makes the Simulator disconnect. If a team is selected, all of its
players get disconnected.

4.2 Options

Using the menu View .Options you can show the option panel which allows you to access the
Hoverball parameters. All parameters are changeable during a simulation, but they only take
effect after the next check in.

4.3 Control buttons

The buttons [<<|] [>>|] [>] pilot the simulation:

[<<|] Reset the Simulator. New players can connect.

[>>|] Reset the Simulator and check in the connected players.

[>] Start/stop the simulation.

Note: The control buttons do not correspond to the Simulator’s three states!

20

4.4. SCREEN 21

4.4 Screen

The screen is opened by means of View .Screen. You can change the perspective by mouse dragging.
Moreover, pucks can be relocated by the mouse when the simulation is paused. As a special feature,
Full Screen Mode is also provided.

The following shortcuts simplify the handling:

DEL like [<<|] — Initialize.

INS like [>>|] — Check in.

SPACE like [>] — Start/stop.

PAUSE like SPACE, but PAUSE works only if a game is created.

ENTER,ESC Enter/leave Full Screen Mode.

4.5 Zoom

The sphere can be zoomed. Select the zoom factor via the menu View .Zoom or zoom by hand on
active screen using the shortcuts:

NUMPAD + Zoom in.

NUMPAD - Zoom out.

4.6 Follow mode

The screen can be configured to „follow“ a certain puck. It changes the perspective automatically so
that the tracked puck is always in the front. Enable the follow mode using the menu View .Follow
Mode.

These shortcuts on active screen will give you a hand:

PGUP, PGDN Enable follow mode and browse.

HOME Follow ball.

END Quit follow mode.

4.7 Views

The Controller is able to save snapshots of Hoverball’s world, called views. For this purpose, it
has any desired memory at its disposal, and you can access nine memory cells via the following
shortcuts on active screen:

CTRL-1...CTRL-9 Save the current view in cell 1...9.

1...9 Fetch the view from cell 1...9.

22 PART 4. THE CONTROLLER

The command View .Copy to Clipboard copies the current view as a string into the operating
system clipboard. You can now use this view together with the view(...) methods of the class
hoverball.Controller during the development of your own team as starting situation.

4.8 Debug

The menu Debug can enable and disable the graphical debugging of each Java unit. Section 5.5
gives a detailing description of how to use graphical debugging.

Part 5

Programming

The Hoverball-Simulator communicates by sending strings in a network via TCP. Therefore,
basically any programming language that supports TCP can be used for programming players.

With Java or alternative languages such as Groovy, Scala, Kotlin or Jython, which run on a
Java Virtual Machine, you can include the classes from Hoverball directly. This offers the following
advantages:

• Predefined abstract player and team classes
(class hoverball.Unit and class hoverball.Team)

• Network communication without programming sockets and parsing strings
(class hoverball.Unit and class hoverball.Controller)

• Predefined math library perfect fit to Hoverball
(package hoverball.math)

• Visualization of player strategies on the sphere by „Graphical Debugging“
(package hoverball.debug)

• Quick start file with the integration of players and teams in the Hoverball framework
(class hoverball.session)

• Provision of your own teams within the cosmos of the Java Virtual Machine
(package hoverball.team)

All details can be found in the Java API Specification from Hoverball (directory docs). In the
following, only a few aspects will be highlighted in more detail.

5.1 Session

The class hoverball.Session allows the simultaneous execution of your players and all other
required Hoverball components, offering a lot of configuration possibilities. For instance, it fulfills
the following tasks:

• Opens and configures the Simulator and the Controller

23

24 PART 5. PROGRAMMING

• Opens team and player programs

• Coordinates the Hoverball Frames

• Connects automatically

• Starts the simulation

In the example below, a Hoverball Session opens a Simulator, a Controller and a human player,
showing the Controller’s screen and activating the follow mode on the human player.

import hoverball.*;

public class MySession extends Session
{

public static void main (String[] args) { new MySession(); }

public MySession ()
{

super("My Session"); // open Simulator and Controller
Human human = new Human("Human"); // open Human Player
add(human); // add Human Player
controller.show(); // show Controller
controller.viewer.show(); // show Controller's screen
controller.follow(human); // follow Human Player
simulator.state(1); // check in!

}
}

5.2 Hovlets

The architecture of Hoverball is based on the fundamental programming unit Hovlet. Every
component of Hoverball — except for the Simulator — is a hovlet.

Hovlets are small Hoverball programs that are able to connect to the Simulator as unit client
or control client. They can be interlaced into each other building arborescent hovlet structures.
(For example, player hovlets can be pooled to a team hovlet.) These hovlet trees are displayed by
a single frame (so-called browser), that pops up a certain hovlet on request. Of course, hovlets can
also be displayed seperately in individual browser windows.

This information lets you better understand the session code of the precedent section: The
session is a super-hovlet for Controller, teams and players! (Besides the Controller which is automatically
integrated to the session, the command add(human) adds the human player to the hovlet structure.
The command controller.show() opens a browser for the complete session structure and pops
up the Controller.)

5.3. UNITS 25

5.3 Units

The abstact class hoverball.Unit is the starting point for your own players. It effectively represents
the empty shell of a player that only has to be filled by a thinking algorithm.

For this purpose, use the essential method loop(): It is called up by Hoverball when the game
starts and should only be left when the game is resumed or stopped. The method look() returns
true as long as the game is in progress, and at the same time asks the Simulator for the current
vision. The command action(...) finally sends an action to the Simulator.

The following simple structure arises for a Java unit:

public void loop()
{

... // initialize.
while(look())
{

... // thinking...
action(...); // action!

}
}

There is another example of an uncomplex and somewhat „clumsy“ Java unit in appendix C.

5.4 Teams

Players can be pooled together in teams. The idea is pretty simple: Add the players to a trivial
bundling hovlet.

The class hoverball.Team performs that task. The programming code of a Java team may look
like this:

import hoverball.*;

public class MyTeam extends Team
{

public MyTeam ()
{

super("My Team"); // create the team

add(new MyUnit1()); // add player 1
add(new MyUnit2()); // add player 2
add(new MyUnit3()); // add player 3

}
}

26 PART 5. PROGRAMMING

5.5 Graphical Debugging

Java units are able to plot graphical elements directly on the sphere. The package hoverball.debug
offers some base elements, called debugs, like lines, circular arcs and text that can be arbitrarily
combined and extended. Moreover, it is possible to define private debugs accessing the whole
graphical command pool of Java 2D.

The Java unit command debug(...), which plots a debug element on screen relatively to the
unit’s position, can be called anywhere inside the method loop(). Unlike the messages, which are
valid until they are overwritten, „survives“ a plotted debug until the next call of look().

This human unit identifies each object visible to it:

import hoverball.*;
import hoverball.math.*;
import hoverball.debug.*;

public class Debuggy extends Human
{

public Debuggy () { super("Debuggy"); } // constructor

public void loop ()
{

while(look())
{

for (int i=0; i<pucks.length; ++i) { // for all pucks do:
Puck puck = pucks[i];
if (puck.X == null) continue; // (only heard?)
debug(new Circle(puck.X.c,Math.PI/18)); // circle around puck
debug(new Text(puck.X.c,puck.id,1),-1); // identity of puck

}
}

}
}

Note: Units with Graphical Debugging are to be registered at the displaying Controller. This can
be done either by the method add(Unit,true) of the Hoverball session, or by the Controller’s
method debug(Unit,true).

5.6. OPERATOR OVERLOADING 27

5.6 Operator Overloading

While Java rejects the concept of operator overloading to this day, the language alternatives Groovy,
Scala, Kotlin or Jython mentioned above offer this for Hoverball extremely useful concept.

The classes from hoverball.math support Operator Overloading insofar as the corresponding
methods are already implemented and work „out of the box“. For example, the Java snippet

Complex a = new Complex(3,1)
Complex b = new Complex(1,2)
Complex c = a.add(b).mul(0.5)

Vector v = new Vector(1,0,0);
Matrix M = puck[i].X.mul(puck[j].X.inv());
v = v.mul(M);

can be written in Groovy like

a = new Complex(3,1)
b = new Complex(1,2)
c = (a+b)/2

v = new Vector(1,0,0)
M = puck[i].X * (~ puck[j].X)
v *= M

It should be noted here that the matrix multiplication in Hoverball is read from left to right,
contrary to the standard notation in mathematics. This means that commands such as the bottom
command line of the code examples are also possible.

At this point it should be pointed out that there are also approaches for Java to enable Operator
Overloading, for example through the Java-OO project by Artem Melentyev:

http://amelentev.github.io/java-oo/

The corresponding methods for this are also defined in hoverball.math.

Appendix A

Mathematical Specification

In this chapter we want to concentrate on the mathematics and physics that underlie Hoverball.
What formulas are used when a puck activates its engines or attracts a ball? How is friction modeled?
What happens on a collision between two pucks? We will study these and other questions by looking
deeply into the simulation kernel.

As the sphere surface can be locally approximated by a two dimensional vector space, let’s first
simplify the situation and shift the playing area to R2 that we identify with the field of complex
numbers C.

A.1 A puck’s attributes

What properties are required to describe a puck’s status on C?
A puck has the steady attributes

• radius 0 < r ∈ R,

• mass 0 < m ∈ R,

and for its movement depending on time t

• position x(t) ∈ C (puck’s disc center),

• angular position α(t) ∈ R (in radian relative to the x-axis),

• momentum p(t) ∈ C,

• angular momentum L(t) ∈ R.

The current velocity is calculated by

v(t) =
p(t)

m
and the angular velocity is

ω(t) =
L(t)

J
,

where J = 1
2mr2 means the so-called momentum of inertia. Note that due to C× R = R3 we only

need three real parameters for a definite specification of positions and momenta, namely the tupels
(x, α) and (p, L).

28

A.2. PROPULSION 29

With this terminology we get the first equation of motion of a non-accelerated puck without
friction. If t ≥ 0 is the elapsed simulation time, we have

x′(t) = v(t), x(0) = x0 ∈ C
α′(t) = ω(t), α(0) = α0 ∈ R.

(1)

A.2 Propulsion

In order to move at will, a puck has to influence its momentum and angular momentum. For this
purpose it holds two engines by the use of which it produces accelerating forces. The engines are
mounted at a defined location and in a defined direction relative to the puck’s position. When we
place the puck at the origin aligned to the x-axis, the engines are situated at the points

rL = ri λF ∈ C and rR = −ri λF ∈ C (with 0 ≤ λF ≤ 1)

and the appearing forces always act parallel to the x-axis. That’s why the pucks only choose among
real number values FL and FR. The force pushes the puck forward if the value is positive, and
backward if it is negative. What is the impact of these engine forces on acceleration? At first we
should inspect the universal case of a force F acting in an arbitrary direction at an arbitrary
position z on the puck’s surface (the two values relative to the puck). For in this case we obtain

p′(t) = F · eiα(t) and L′(t) = T,

where the rotational inertia T in R3 is generally calculated by the three dimensional vector product
T = F × z. Because of

(a1, a2, 0)× (b1, b2, 0) = (0, 0, a1b2 − a2b1)

we define the „small vector product“ × : R2 × R2 −→ R in our two dimensional case by

(a1, a2)× (b1, b2) = a1b2 − a2b1.

In the special case of the puck’s engines, the following equations arise:

p′(t) = (FL(t) + FR(t)) · eiα(t)

L′(t) = (FL(t)× rL) + (FR(t)× rR)

= (FL(t)× ir λF) + (FR(t)× (−ir λF))

= (FL(t)− FR(t)) · r λF

(2)

A.3 Friction

The pucks move in a certain medium like air. According to the model of air friction, motion in this
medium is countered by a force that increases proportionally to velocity, as long as the generated
flow is laminar, i.e. unruffled (we disregard that on fast motions the flow gets turbulent, and the
drag has a squared growth rate). The quantum of friction depends on the medium viscosity V .

30 APPENDIX A. MATHEMATICAL SPECIFICATION

An occurring momentum p ∈ C is thus opposed by a reaction force θp · p, 0 ≤ θp, so that we
can write friction as follows:

p′(t) = −θp · p(t).

To determine the slowing coefficient θp we abide by Stokes’ Law for the drag on a sphere, stating
that

p′(t) = −6πV r

m
· p(t). (3)

To simplify matters in the case of angular momentum L, we consult Newton’s Law of Viscosity
(reacting force = V · body surface · velocity gradient) and use a boundary layer to calculate the
velocity gradient b. The boundary layer describes the distance to the puck’s border where the
medium is no longer carried along by rotation. This leads to the lifelike equation of motion

L′(t) = −V · 2πr · rω(t)
b

= −V · 2πr · rL(t)
1
2mr2b

= −4πV

mb
· L(t) = −θL · L(t).

(4)

A.4 Universal equation of motion

We are now in the position to describe a puck’s motion on the complex plane, depending on its
engine forces fL(t) and fR(t) by a system of two differential equations. For this, we only have to
bring together the two equations of motion we examined so far. There is altogether on account of
(2), (3) and (4)

v′(t) = −θp · v(t) + 1
m [fL(t) + fR(t)] · eiα(t)

ω′(t) = −θL · ω(t) + 1
J [fL(t)− fR(t)] · rλF

and due to (1) we obtain

x′′(t) = −θp · x′(t) + 1
m [fL(t) + fR(t)] · eiα(t), x(0) = x0 ∈ C

α′′(t) = −θL · α′(t) + 1
J [fL(t)− fR(t)] · rλF , α(0) = α0 ∈ R

A.5 Polarization

In addition to the engines, the players are able to polarize a defined point of its surface area which
attracts or repels other polarized pucks. When we place the puck at the origin aligned to the x-axis,
the charging point is situated at

rQ = rλQ ∈ C (with 0 ≤ λQ ≤ 1)

A.6. COLLISION AND REFLECTION 31

for players and at the center (rQ = 0) for balls. Which law is applied here? It is the so-called
Coulomb force that acts between two electrostatically charged bodies. Let P1 and P2 ∈ C be two
points with charges Q1 resp. Q2 ∈ R. Then we observe a force operating at P1 whose value is

F1 =
1

4πε0
·Q1Q2 ·

P1 − P2

|P1 − P2|3
∈ C

and at P2 we have
F2 = −F1.

The constant 0 < ε0 ∈ R is the electric field constant. (Unfortunately, in reality electrostatic
forces are so small that you cannot obtain any notable effects. They are just sufficient to stick some
little scraps of paper to a balloon, but never strong enough to move heavy objects.)

For two polarized pucks, we get

F1 =
1

4πε0
·Q1Q2 ·

x1 + rQ1 − x2 − rQ2

|x1 + rQ1 − x2 − rQ2|3
and F2 = −F1.

Since all charges of n pucks interact, attending to the definition

Fi(t) =
1

4πε0
·
∑
i 6=j

Qi(t)Qj(t)
xi(t) + rQi(t)− xj(t)− rQj(t)

|xi(t) + rQi(t)− xj(t)− rQj(t)|3

we obtain a system of 2n differential equations in the form

x′′i (t) = −θpi · x′i(t) + 1
mi

[fLi(t) + fRi(t)] · eiαi(t) + 1
mi

Fi(t), xi(0) = xi0 ∈ C
α′′
i (t) = −θLi · α′

i(t) +
1
Ji
[fLi(t)− fRi(t)] · riλF αi(0) = αi0 ∈ R

(i = 1 . . . n)

A.6 Collision and reflection

When two or more pucks move on the sphere, collisions can occur. Let P1 and P2 be two colliding
pucks, i.e. they just adjoin to one another. Now we have to redirect their momenta p1, p2 and
angular momenta L1, L2 in consideration of their current properties by converting them into new
momenta p′1, p

′
2, L

′
1, L

′
2.

At the beginning let’s align the two dimensional vectors along the coordinate axes. If R1, R2

are the vectors pointing from the pucks’ center to the collision point at their borders, we define the
normal and tangential unit vector as

e⊥ :=
R1

r1
and e‖ := i · e⊥ = i · R1

r1
.

Moreover, we can observe the correlation between the small vector product and the dot product:

∀ a, b ∈ C : a× b = < ia, b >

Now we are set up for the following calculation in which we want to consider all vector multiplications
as dot products. We want to suppose the laws

(1) Conservation of Energy: p21
m1

+
p22
m2

+
L2
1

J1
+

L2
2

J2
=

p′21
m1

+
p′22
m2

+
L′2
1

J1
+

L′2
2

J2
(2) Conservation of Momentum: p1 + p2 = p′1 + p′2

32 APPENDIX A. MATHEMATICAL SPECIFICATION

We translate the problem to the barycentric system. The barycenter of two mass points moves with
the velocity

vs =
p1 + p2
m1 +m2

.

which we have to substract at the beginning and add at the end of the calculation. In the barycentric
system is

(3) p1 + p2 = 0.

If we decompose the pucks’ momenta into the components p1 = p1⊥ + p1‖ and p2 = p2⊥ + p2‖ in
respect of the coordinate system (e⊥, e‖), we can use additional laws that are true in barycentric
systems:

(4) ∆L1 = R1 ×∆p1 = r1e‖ ·∆p1 = r1e‖ ·∆p1‖

(5) ∆L2 = R2 ×∆p2 = (−r2e‖) · (−∆p1) = r2e‖ ·∆p1‖ [regard (2)],

where „∆“ always means the difference between the new and the old value. Finally we stipulate
that

(6) ∆p1⊥ = −2p1⊥ (⇔ p1⊥ = −p′1⊥),

i.e. the puck rebounds „head-on“. We put (2) – (6) into (1) and solve for ∆p1‖. Then we get applying
µ := 1

m1
+ 1

m2
:

(1) 0 =
p21 − p′21
m1

+
p22 − p′22
m2

+
L2
1 − L′2

1

J1
+

L2
2 − L′2

2

J2

⇒ 0 =
2p1∆p1 +∆p21

m1
+

2p2∆p2 +∆p22
m2

+
2L1∆L1 +∆L2

1

J1
+

2L2∆L2 +∆L2
2

J2

(2), (3) ⇒ 0 = µ ·
(
2p1∆p1 +∆p21

)
+

2L1∆L1 +∆L2
1

J1
+

2L2∆L2 +∆L2
2

J2

(4), (5) ⇒ 0 = µ ·
(
2p1∆p1 +∆p21

)
+

2L1r1e‖∆p1‖ + r21∆p21‖

J1
+

2L2r2e‖∆p1‖ + r22∆p21‖

J2

Because of (6) we obtain the following formula:

2p1∆p1 +∆p21 =
(
2p1‖∆p1‖ +∆p21‖

)
+
(
2p1⊥∆p1⊥ +∆p21⊥

)
= 2p1‖∆p1‖ +∆p21‖,

and hence

0 = µ ·
(
2p1‖∆p1‖ +∆p21‖

)
+

2L1r1e‖∆p1‖ + r21∆p21‖

J1
+

2L2r2e‖∆p1‖ + r22∆p21‖

J2

⇒ 0 =

(
µ+

r21
J1

+
r22
J2

)
∆p21‖ +

(
2µ · p1‖ +

2L1r1
J1

e‖ +
2L2r2
J2

e‖

)
∆p1‖

=

[
3µ ·∆p1‖ + 2

(
µ · p1‖ +

L1r1
J1

e‖ +
L2r2
J2

e‖

)]
·∆p1‖

A.7. THE SPHERE 33

As all appearing vectors are multiples of e‖, the equation results either in ∆p1‖ = 0 (i.e. no stiction
at the pucks’ border and thus no transmission of rotation) or

∆p1‖ = −2

3

(
p1‖ +

L1r1
J1µ

e‖ +
L2r2
J2µ

e‖

)
.

We opt for the second solution and eventually apply

p′1 = p1 +∆p1⊥ +∆p1‖

p′2 = p2 −∆p1⊥ −∆p1‖

L′
1 = L1 +∆L1

L′
2 = L2 +∆L2

A.7 The sphere

Now we reshift the game from the two dimensional plane back onto the sphere surface. In doing so,
we try to keep the physics of Hoverball as two dimensional as possible. Which attributes change
because of the new topology? Which already developed formulas can we retain and which ones have
to be reviewed?

As pucks are „small“ in comparison to the sphere, we can transform the puck’s neighborhood
locally into a plane. Hence the puck maintains the determined attributes radius r > 0 and mass
m > 0 as well as momentum p(t) ∈ C and angular momentum L(t) ∈ R, and all laws about
planar propulsion, friction and reflection apply. But how do we parametrize a puck’s position on
the sphere?

The matrix calculus comes in handy: A right-handed orthonormal basis (RONB) of the R3 is a
system (x1, x2, x3) of three linearly independent, pairwisely orthogonal unit vectors ∈ R3 so that
x1 × x2 = x3.

If we consider the vectors in this order as column vectors of a matrix, we get a unique element
of the multiplicative group of the special orthogonal matrices SO(3). The puck’s position which
corresponds on the plane to the two dimensional x and the one dimensional angular position α can
be identified on the sphere with an element X ∈ SO(3), if we imagine the puck „oriented“ along
the X-associated RONB. The puck’s center on the sphere is thus situated exactly where the ray
generated by x3 pierces the sphere.

A movement on the sphere corresponds to a multiplication of the current position by a turn
matrix A ∈ SO(3). The two dimensional attributes of motion (v and ω) can be maintained for we
build of them a turn matrix S for a definite small dt > 0 as follows (v(t) 6= 0, else trivial):

S(v(t), ω(t), dt) = Dz(arg v(t)) ◦Dy(
v(t)

R
dt) ◦Dz(ω(t) dt− arg v(t))

where Dy(α) indicates the turn matrix around the y-axis by the angle α, and Dz is respectively
defined. Then the puck moves by

X(t+ dt) = X(t) ◦ S(v(t), ω(t), dt).

34 APPENDIX A. MATHEMATICAL SPECIFICATION

As this method turns the puck in comparison to its velocity, we have to adjust v(t) and turn it
back by ω(t) dt.

We can thus also use all planar formulas of motion on the sphere (position is remodeled) —
except one: As to the polarization of two pucks we have to take into account that the attraction
changes owing to the new topology. That is to say that there is no definite distance between two
objects any more, but a shortest distance, other distances result from any often repeated orbits
around the sphere. This gives rise to the odd behavior that a repelled ball moves to the opposite
side of the sphere and remains there.

Given the sphere radius R and positions P1 und P2 ∈ R3 of two polarized points on the sphere
with charges Q1 resp. Q2 ∈ R, the shortest distance between these points is

d = R · arccos
(
< P1, P2 >

|P1||P2|

)
Then there is a force acting at P1

f1 =
1

4πε0
·Q1Q2 ·

∑
k≥0

1

(d+ 2πR · k)2
−
∑
k>0

1

(d− 2πR · k)2

 ∈ R

According to function theory, the sum
∑

k≥0
1

(x+k)2
can be calculated via the Gamma function Γ:

∑
k≥0

1

(x+ k)2
= Ψ′(x) ∀x ∈ C \ (−N), where Ψ(x) =

Γ′(x)

Γ(x)
.

Hence we get an attraction

f1 =
1

4πε0
·Q1Q2 ·

1

(2πR)2
·
[
Ψ′

(
d

2πR

)
−Ψ′

(
−d

2πR

)
− (2πR)2

d2

]
∀ d 6= 2πR · n, n ∈ Z

and f2 symmetrically.

A.8 Euler angle

How can we encode the pucks’ position matrices with the least number of parameters? The location
of a RONB has three degrees of freedom. It is thus possible to decompose a RONB into three
elementary turns. The resulting angles are called Euler angles, even if our decomposition method
differs slightly from the Euler one.

To indentify the RONB’s with their corresponding Euler angles we choose the following function:

χ : R3 −→ SO(3), χ(ϕ1, ϕ2, ϕ3) = Dz(ϕ1) ◦Dy(ϕ2) ◦Dz(ϕ3)

The function χ is surjective and on its restriction χ | [−π, π)× [0, π]× [−π, π) even one-to-one except
for the two degenerate cases (ϕ2 = 0 and ϕ2 = π). There is thus an „inverse function“

χ−1 : SO(3) −→ R3

for the encoding of position matrices whose method of calculation can be easily found.

A.9. VISUAL ANGLE 35

A.9 Visual angle

To restrict a player’s field of vision there is the attribute „visual angle“ ϕ ∈ [0, 2π] allowing a
blinker-like vision only within a certain angular interval. On a two dimensional plane a puck would
see all pucks in front of it that overlap the angular segment spanned by the interval [−ϕ

2 ,
ϕ
2].

For this we calculate the angular interval [δ−, δ+] (with 0 < δ+−δ−< π and −2π ≤ δ++δ−< 2π),
in which the observed puck is situated, and it is visible if

δ− ≤ ϕ

2
and δ+ ≥ −ϕ

2
.

On the sphere we proceed in the same way: Every player only perceives objects within restraining
borders, however the different topology has the effect that the rays which limit a puck’s field of
vision intersect again on the opposite side of the sphere, so that player see a sphere segment. How
do we calculate the values δ− and δ+? We simplify the matter by turning the observing puck so
that the observed one lies straight ahead. We shall add the angle γ at the end of the calculus. Then
we draw two tangents from the observing puck — its relative position is always E = (e1, e2, e3) —
left and right adjacent to the observed puck — let its relative position be X = (?, ?, x), radius r —
and are interested in the boundary points v−, v+ ∈ R3. We obtain them by means of the following
system of equations

(1) ‖v‖ = 1

(2) R · arccos < v, x > = r ⇐⇒ < v, x > = cos r
R =: c

(3) v × x ⊥ v × e3,

whose solution is on account of x2 = 0:

v3 =
x3
c

v1 =
c2 − x23
cx1

v±2 = ±
√
1− v21 − v23

Now we conclude by

δ− = arg(v1 + iv−2) + γ and

δ+ = arg(v1 + iv+2) + γ

A.10 Energy

The modeling of the energy is kept very simple. The actions of the players cost energy. The energy
consumption for applying the driving force is calculated using F the formula cF · |F | with a certain
drive cost constant cF . The energy costs for applying the charge are Q cQ · |Q| with a certain charge
cost constant cQ.

36 APPENDIX A. MATHEMATICAL SPECIFICATION

Each player has an energy supply 0 ≤ E(t) ≤ E+. This is used for his actions. In addition, the
energy supply of each player is continuously recharged by the system with a fixed energy increase
rate κ.

We get the following differential equation for the energy reserve E(t) of a player:

E′(t) = −cF · |FL(t)| − cF · |FR(t)| − cQ · |Q(t)|+ κ

The effective lower and upper limits for the drive and for the polarization of a player depend
linearly on his energy reserve E(t). The equations apply:

F− · E(t)

E+
≤ FL(t), FR(t) ≤ F+ · E(t)

E+

Q− · E(t)

E+
≤ Q(t) ≤ Q+ · E(t)

E+

The actual action values FL(t), FR(t) and Q(t) are adjusted if they exceed the effective limits.

Appendix B

Tables

B.1 Network protocols

Unit client to Server Server to Unit client

(connect #[hash] team unit color) (connect #[hash] t n team unit color)
(checkin X∗)

(look) (look E ϑ Puck∗)
(action Q FL FR [message])

(break)

(ping) (ping)

(bye) (bye)

Puck ::= (what t n x1 x2 x3 [message]) what ::= unit | ball | node

Control client to Server Server to Control client

(connect #[hash] name) (connect #[hash] name)
(set key [value]) (set key [value])

(channel t n team unit color host)
(channel t n) (channel t n)

(state q) (state q)

(view [time] Puck∗ Score∗) (view time Puck∗ Score∗)
(ping) (ping)

(bye) (bye)

Puck ::= (what t n x1 x2 x3 v1 v2 v3 r m Q [FL FR E ϑ message]) what ::= unit | ball
Score ::= (score t score)

37

38 APPENDIX B. TABLES

B.2 Hoverball options

Option Limits Default Description
simulator.frequency 0 < · 50 Simulation frequency (Hertz)
simulator.time Λ 0 ≤ · 1 Real time coefficient (Hertz)
simulator.precision 0 < · 1 Precision coefficient
game.duration T 0 ≤ · 300 Game duration
game.balls.shot 0 ≤ · ≤ 99 1 Number of shot balls
game.balls.team 0 ≤ · ≤ 99 1 Number of team balls per team
game.timeout 0 < · 1 Timeout for repeated scoring
game.penalty Θ 0 ≤ · 10 Penalty duration
game.recharge κ 0 ≤ · 0.2 Energy recharge rate for units
world.radius R 0 < · 50 Sphere radius
world.viscosity V 0 ≤ · ≤ 1 0.1 Friction viscosity
world.boundary b 0 < · 0.1 Friction boundary layer
world.permittivity ε0 0 < · 0.000001 Electric field permittivity
unit.radius r 0 < · 2 Unit radius
unit.mass m 0 < · 4 Unit mass
unit.charge.min Q− · ≤ 0 -1 Unit’s highest negative charge
unit.charge.max Q+ 0 ≤ · 1 Unit’s highest positive charge
unit.charge.pos λQ 0 ≤ · ≤ 1 0.5 Position coefficient of the charging point
unit.charge.cost cQ 0 ≤ · 10 Energy cost for charge
unit.engine.min F− · ≤ 0 -50 Unit’s highest negative engine force
unit.engine.max F+ 0 ≤ · 50 Unit’s highest positive engine force
unit.engine.pos λF 0 ≤ · ≤ 1 0.5 Position coefficient of the propulsion points
unit.engine.cost cF 0 ≤ · 0.001 Energy cost for engine force
unit.energy.max E+ 0 ≤ · 1 Unit’s highest energy level
unit.vision ϕ 0 ≤ · ≤ 2 1.0 Unit’s vision angle (·π)
unit.message ` 0 ≤ · 100 Length of unit messages
ball.radius r 0 < · 1 Ball radius
ball.mass m 0 < · 1 Ball mass
ball.charge Q 0 ≤ · 1 A shot ball’s permanent charge
ball.halflife 0 < · 0.005 A team ball’s charge halflife

Appendix C

Example „Clumsy“

The following Java unit called „Clumsy“ pursues a simple strategy in order to shoot the shot ball
at its team ball:

import hoverball.*;
import hoverball.math.*;

public class Clumsy extends Unit
{

public Clumsy ()
{

super(null,"Clumsy",0x8888FF); // name "Clumsy", color light blue
}

public void loop ()
{

Sphere sphere = new Sphere(option("world.radius")); // read out parameters...
double Qmax = option("unit.charge.max");
double Fmax = option("unit.engine.max");

while (look())
{

Puck ball = puck(BALL,0,1); // that's the ball
Puck goal = puck(BALL,self.t,1); // that's the goal

if (ball == null) action(0,-Fmax,Fmax); // does not see ball? turn!
else { // does see ball:

Vector a = (goal != null)? Vector.vec(goal.X.c,ball.X.c) : // calculate
Vector.vec(ball.X.c,self.X.c); // axis

Matrix X = Matrix.mul(ball.X,Matrix.rot(a,(self.r+ball.r)/sphere.rad));
Complex x = sphere.warp(X.c); // X is shot position

double l = -x.arg() + Math.max(0.2,1-10*Math.abs(x.arg())); // turn and
double r = x.arg() + Math.max(0.2,1-10*Math.abs(x.arg())); // go to X
double q = (x.abs() < ball.r)? 0.5 : 0; // if at X: shoot!

action(q*Qmax,l*Fmax,r*Fmax);
}

}
}

}

39

